

ИНСТРУКЦИЯ

Набор реагентов для определения статуса мутаций гена *EGFR* методом ПЦР-РВ в пробе геномной ДНК человека из образцов фиксированной в парафине ткани (Тест-EGFR-ткань) по ТУ 21.20.23-005-97638376-2016

Содержание

1. Назначение	3
 Характеристики набора 	6
3. Принцип действия	
4 Аналитические и диагностические характеристики набора	
5. Перечень рисков, связанных с применением набора реагентов	
«Тест-EGFR-ткань»	11
6. Меры предосторожности при работе с набором	11
7. Оборудование и материалы, необходимые при работе с набором	13
8. Анализируемые пробы	14
9. Подготовка компонентов набора для исследования	
10. Проведение анализа	18
11. Регистрация и интерпретация результатов	
12. Условия хранения, транспортирования и эксплуатации набора	
13. Утилизация	
14. Гарантийные обязательства, контакты	
,	_

1. Назначение

набор «Тест-EGFR-ткань» Назначение: реагентов предназначен для профессионального применения в медицинских клинико-лиагностических **учрежлениях** и лабораториях онкологического профиля при обследовании пациентов с диагнозом «немелкоклеточный рак легкого» для качественного определения статуса мутации L858R и делеций (del) в 19 экзоне (обнаруживает наличие 27 делеций, но не различает их) гена *EGFR* метолом аллельспецифической ПЦР в режиме реального времени в пробе геномной ЛНК человека из образцов фиксированной в парафине ткани для определения показаний к таргетной терапии низкомолекулярными ингибиторами тирозинкиназы EGFR.

Область применения набора реагентов - клиническая лабораторная диагностика, онкология.

Тип анализируемого образца. Материалом для проведения ПЦР служат пробы геномной ДНК человека из образцов фиксированной в парафине ткани.

Принцип определения

Анализ проводится методом аллель-специфической ПЦР в режиме реального времени. Продукты ПЦР исследуемого гена *EGFR* идентифицируются в 5'-экзонуклеазной реакции с помощью зондов, меченных FAM и HEX. Набор содержит реагенты для анализа мутации L858R и делеций в 19 экзоне (обнаруживает наличие 27 делеций, но не различает их) исследуемого гена *EGFR*. ПЦР-смеси состоят из всех необходимых реагентов. Набор также включает положительный контрольный образец (ПКО), содержащий эквимолярную смесь мутации L858R и делеций (del) в 19 экзоне в концентрации 5% и отрицательный контрольный образец (ОКО).

Все ПЦР-смеси содержат праймеры и зонды к внутреннему контрольному образцу (ВКО). Зонды к ВКО помечены НЕХ (см. раздел 11 «Регистрация и интерпретация результатов»). Это контроль эффективности экстракции ДНК и возможного наличия ингибиторов в пробе, присутствие которых может привести к ложноотрицательным результатам.

Описание целевого аналита, сведения о его научной обоснованности

Целевой аналит — ген EGFR, исследуемый при обследовании пациентов с диагнозом «немелкоклеточный рак легкого» для качественного определения статуса мутации L858R и делеций (del)

в 19 экзоне гена *EGFR* для определения показаний к таргетной терапии низкомолекулярными ингибиторами тирозинкиназы EGFR.

Научная обоснованность. Рак легкого — одна из наиболее распространенных форм злокачественных онкологических заболеваний. Ежегодно в России от рака легкого погибают около 60 тыс. человек, что составляет 20% от всех умерших от злокачественных заболеваний.

Идентификация и расшифровка механизма действия рецептора эпидермального фактора роста опухоли (*EGFR* — Epidermal Growth Factor Receptor) стала одним из многообещающих открытий в онкологии.

3a послелние изучение рецептора несколько лет эпидермального фактора роста стало одним из актуальных аспектов современной онкологии. Установлено, что высокая гиперэкспрессии EGFR характерна для немелкоклеточного рака легкого (40—70%), рака яичников (35—70%), толстой кишки (25— 77%) и др. Известно, что выявление повышенной экспрессии *EGFR* является фактором неблагоприятного прогноза течения болезни. Активация механизмов с участием *EGFR* приводит к усилению пролиферативной активности опухолевых клеток, неоангиогенезу, замедлению апоптоза, более раннему появлению метастазов.

Большинство соматических мутаций гена EGFR, обнаруживаемых у больных немелкоклеточным раком легкого (НМРЛ), локализованы в экзонах 18—21, кодирующих тирозинкиназный домен. Открытие этих мутаций немедленно связали с положительным ответом на терапию ингибиторами тирозинкиназы EGFR.

Наиболее частыми являются делеции в экзоне 19 (45% от всех мутаций), за ними следует нуклеотидная замена Т на G в положении 2573 экзона 21, что приводит к аминокислотной замене лейцина на аргинин в положении 858 аминокислотной последовательности (L858R, 41%), на вставки в экзоне 20 и нуклеотидные замены в

экзонах 18 и 20 приходится 14% мутаций. Данные мутации встречаются у 10% больных НМРЛ европеоидного происхождения и у 50% азиатов.

Назначение ингибиторов тирозинкиназы (ТК) больным НМРЛ с наличием делеций в 19 экзоне (Del19) или мутации L858R гена *EGFR*, связанных с чувствительностью к ингибиторам тирозинкиназы (ТК), является эффективным методом лечения, приводящим к существенному сокращению размеров опухолевых очагов и контролю проявлений заболевания на достаточно продолжительный срок.

Специфическая патология, состояние или фактор риска, для обнаружения, определения или дифференцирования которого предназначено медицинское изделие для диагностики in vitro - набор реагентов предназначен для определения показаний к таргетной терапии при обследовании пациентов с диагнозом «немелкоклеточный рак легкого» для качественного определения статуса мутации L858R и делеций (del) в 19 экзоне (обнаруживает наличие 27 делеций, но не различает их) гена *EGFR*.

Показания и противопоказания к применению

Показания к применению: Набор реагентов «Тест-EGFR-ткань» рекомендуется при обследовании пациентов с диагнозом «немелкоклеточный рак легкого» для качественного определения статуса мутации L858R и делеций (del) в 19 экзоне (обнаруживает наличие 27 делеций, но не различает их) гена *EGFR* методом аллель-специфической ПЦР в режиме реального времени в пробе геномной ДНК человека из образцов фиксированной в парафине ткани, для определения показаний к таргетной терапии низкомолекулярными ингибиторами тирозинкиназы EGFR.

Противопоказания: отсутствуют.

Набор предназначен для профессионального применения в медицинских учреждениях и клинико-диагностических лабораториях онкологического профиля. Профессиональный уровень потенциальных пользователей — врач клинической лабораторной диагностики, медицинский лабораторный техник.

Общее время проведения анализа составляет 1 ч.

2. Характеристики набора

Набор реагентов выпускается в 1 форме комплектации – «Тест-EGFR-ткань». Каждый набор «Тест-EGFR-ткань» содержит реагенты, рассчитанные на проведение 24 определений.

Состав набора

Набор реагентов «Тест-ЕGFR-ткань» включает:

Таблица 1 – Состав набора реагентов «Тест-EGFR-ткань»

№ пп	Название реагента	Маркировка на крышке пробирки	Описание	Количество пробирок, объём, мкл
1	ПЦР-смесь del	del	Прозрачная жидкость розового цвета	1 пробирка (120 мкл)
2	ПЦР-смесь L858R	L858R	Прозрачная жидкость розового цвета	1 пробирка (120 мкл)
3	ПКО	К+	Прозрачная бесцветная жидкость	1 пробирка (120 мкл)
4	ОКО	К-	Прозрачная бесцветная жидкость	1 пробирка (120 мкл)
5	Taq- полимераза	Taq	Прозрачная бесцветная жидкость	1 пробирка, (580 мкл)

Положительный контрольный образец (ПКО) готов к использованию и представляет собой смесь геномной ДНК из культуры клеток человека линии Jurkat в концентрации 400 копий гена *EGFR* в 1 мкл и искусственно синтезированной вставки размером 300 п.н., содержащей эквимолярную смесь мутации L858R и делеций (del) в 19 экзоне гена *EGFR*, в плазмидный вектор рАL-TA с концентрацией 20 копий плазмидной ДНК в 1 мкл. Содержит 5% мутантных и 95% нормальных копий ДНК.

В качестве ОКО используют воду деионизованную.

Все ПЦР-смеси содержат праймеры и зонды к внутреннему контрольному образцу (ВКО). Зонды к ВКО помечены НЕХ (см. раздел 11 «Регистрация и интерпретация результатов»). Это контроль эффективности экстракции ДНК и возможного наличия ингибиторов в пробе, присутствие которых может привести к ложноотрицательным результатам.

3. Принцип действия

Качественное определение статуса мутации L858R и делеций (del) в 19 экзоне (обнаруживает наличие 27 делеций, но не различает их) гена *EGFR* методом аллель-специфической ПЦР в режиме реального времени в пробе геномной ДНК человека из образцов фиксированной в парафине ткани включает в себя три этапа:

- 1) подготовку ПЦР;
- 2) ПЦР-амплификацию ДНК и гибридизационнофлуоресцентную детекцию продуктов амплификации в режиме «реального времени»;
 - 3) интерпретацию результатов.

пробами геномной ЛНК образцов человека фиксированной парафине реакции ткани проводятся амплификации участков гена *EGFR* в реакционном буфере при помощи специфичных к этим участкам ДНК праймеров и фермента Тад-полимеразы. В составе реакционной смеси для амплификации аллель-специфичные флуоресцентно-меченые присутствуют олигонуклеотидные гибридизуются зонды, которые комплементарным участком амплифицируемой ДНК-мишени и разрушаются Тад-полимеразой, в результате чего происходит флуоресценции. нарастание интенсивности Это позволяет регистрировать специфического накопление продукта амплификации путем измерения интенсивности флуоресцентного **Детекция** флуоресцентного сигнала осуществляется непосредственно в ходе ПЦР с помощью амплификатора с системой

По каналу, соответствующему флуорофору **HEX**, детектируется продукт амплификации ДНК нормального варианта гена EGFR, по каналу, соответствующему флуорофору **FAM**, детектируется продукт амплификации ДНК мутантных вариантов гена EGFR и делеций в экзоне 19 (обнаруживает наличие 27 делеций, но не различает их).

детекции флуоресцентного сигнала в режиме «реального времени».

4 Аналитические и диагностические характеристики набора

4.1 Аналитические характеристики

Таблица 2 – Аналитические характеристики набора реагентов «Тест-EGFR-ткань»

Аналитическая специфичность	Специфичен по отношению к мутации L858R и 27 делециям (del)* в 19 экзоне гена <i>EGFR</i>
Аналитическая	10 копий
чувствительность	гена <i>EGFR</i> в 1 мкл раствора ДНК

^{*} обнаруживает наличие любой из 27 делеций, но не различает их

Список определяемых делеций с указанием ID делеции представлен в таблице 3 (набор реагентов обнаруживает наличие любой из 27 делеций, но не различает их).

Таблица 3 - Список определяемых делеций с указанием ID делеции

Набор делеций, определяемых с	COSMIC ID**
помощью набора реагентов «Тест- EGFR-ткань»	
2235_2249del15	6223
2235_2252>AAT (complex)	13551
2236_2253del18	12728
2237_2251del15	12678
2237_2254del18	12367
2237_2255>T (complex)	12384
2236_2250del15	6225
2238_2255del18	6220
2238_2248>GC (complex)	12422
2238_2252>GCA (complex)	12419

Набор делеций, определяемых с помощью набора реагентов «Тест-	COSMIC ID**
EGFR-ткань»	
2239_2247del9	6218
2239_2253del15	6254
2239_2256del18	6255
2239_2248TTAAGAGAAG>C	12382
2239_2258>CA (complex)	12387
2240_2251del12	6210
2240_2257del18	12370
2240_2254del15	12369
2239_2251>C (complex)	12383
2236_2252>AT (complex)	26680
2236_2251>T (complex)	26513
2238_2252del15	23571
2237_2252>T (complex)	12386
2235_2255>GGT (complex)	85797
c.2235_2246del12	28517
2235_2251>AG (complex)	13549
2236_2253>CAA (complex)	22999

^{**} идентификационный номер мутации согласно международной базе соматических мутаций при раковых заболеваниях COSMIC (Catalog of Somatic Mutations in Cancer).

4.2 Диагностические характеристики:

Диагностическая специфичность — 94,3 % с доверительной вероятностью 90%

Диагностическая чувствительность — 90.9% с доверительной вероятностью 90%

Специфичность анализа определяется олигонуклеотидными затравками (праймерами), подобранными к гомологичным участкам генов, а также специфичными флуоресцентными олигонуклеотидными зондами для гибридизации с комплементарными участками ампликонов (специфических продуктов амплификации), что исключает перекрестные реакции.

Ограничения метода

Обнаружение мутаций зависит от целостности образца и количества амплифицируемой ДНК, присутствующей в образце. Чистота выделенной ДНК, выраженная в отношении оптических плотностей (A260/280нм), необходимая для проведения исследования, должна составлять не менее 1,4. Концентрация ДНК, достаточная для проведения исследования должна составлять 1-50 нг/мкл.

Ткань опухоли не является гомогенной, в связи с этим результаты анализа, полученные из образца ткани, могут не совпадать с результатами других секций той же самой опухоли. Кроме того, образцы опухоли могут содержать и нормальную (неопухолевую ткань). При использовании пробы геномной ДНК, выделенной из ткани, не содержащей опухоль, набор «Tect-EGFR-Tkahb» не сможет выявить мутации Tehateuron

Метод ПЦР крайне чувствителен к контаминации. Соблюдайте осторожность, чтобы избежать контаминации образцов исследуемой ДНК и реакционных смесей содержимым из пробирки ПКО или продуктами ПЦР.

Набор реагентов «Тест-EGFR-ткань» не может использоваться для диагностики какой-либо патологии. Набор реагентов «Тест-EGFR-ткань» предназначен только для качественного определения статуса мутации L858R и делеций (del) в 19 экзоне (обнаруживает наличие 27 делеций, но не различает их) гена *EGFR*.

5. Перечень рисков, связанных с применением набора реагентов «Тест-EGFR-ткань»

В пограничную зону риска вошли опасности:

- потеря функциональных свойств реагентов, входящих в набор, из-за транспортирования, хранения или эксплуатация в несоответствующих условиях,
- утилизация набора с нарушением соответствующих мер безопасности и дезактивации,
 - перекрестная контаминация образцов;
 - загрязнение материалов ингибирующими веществами;
- контаминация реакционных смесей с образцами исследуемой ДНК содержимым из пробирки ПКО, или продуктами ПЦР;
- невыполнение требований по пробоподготовке, проведению анализов и утилизации, в следствии работы с набором неквалифицированным персоналом.

В области недопустимой зоны риски не выявлены.

Совокупный остаточный риск применения медицинского изделия «Набор реагентов для определения статуса мутаций гена *EGFR* методом ПЦР-РВ в пробе геномной ДНК человека из образцов фиксированной в парафине ткани (Тест-EGFR-ткань) по ТУ 21.20.23-005-97638376-2016», производства ООО «ТестГен» является допустимым, польза от его применения превышает риск.

6. Меры предосторожности при работе с набором

Класс в зависимости от потенциального риска применения — 26 в соответствии с номенклатурной классификацией медицинских изделий, утверждаемой приказом Министерства здравоохранения Российской Федерации от 06.06.2012 N 4н.

Все составные части и реагенты, входящие в состав набора реагентов «Тест-EGFR-ткань», относятся к 4 классу опасности (вещества малоопасные) в соответствии с ГОСТ 12.1.007-76 «ССБТ. Классификация вещества. И общие требования безопасности». Меры предосторожности против любых несвойственных экологических специальных. при использовании или реализации изделия не предусмотрены.

Реагенты, входящие в набор «Тест-EGFR-ткань», обладают низкой упругостью пара и исключают возможность ингаляционного отравления.

Реагенты, входящие в набор «Тест-EGFR-ткань» не токсичны, поскольку готовятся путём смешивания отдельных нетоксичных компонентов.

Работа должна проводиться в лаборатории, выполняющей молекулярно-биологические (ПЦР) исследования клинического материала с соблюдением санитарно-эпидемических правил СанПиН 2.1.7.2790-10 «Санитарно-эпидемиологические требования к обращению с медицинскими отходами». Следовать рекомендациям, изложенным в МУ 287-113, МУ 1.3.2569-09.

При работе всегда следует выполнять следующие требования:

- Удалять неиспользованные реактивы в соответствии с п. 4.28 СанПиН 2.1.7.2790-10 «Санитарно-эпидемиологические требования к обращению с медицинскими отходами».

ВНИМАНИЕ! При удалении отходов после амплификации (пробирок, содержащих продукты ПЦР) недопустимо открывание пробирок и разбрызгивание содержимого, поскольку это может привести к контаминации продуктами ПЦР лабораторной зоны, оборудования и реагентов.

- Применять набор строго по назначению, согласно данной инструкции.
- Допускать к работе с набором только специально обученный персонал.
 - Не использовать набор по истечению срока годности.
- Избегать контакта с кожей, глазами и слизистой оболочкой. При контакте немедленно промыть пораженное место водой и обратиться за медицинской помощью.

Необходимых мер предосторожности в отношении влияния магнитных полей, внешних электрических воздействий, электростатических разрядов, давления или перепадов давления, перегрузки, источников взрыва или возгорания не предусмотрено.

В составе набора отсутствуют вещества человеческого или животного происхождения, обладающие потенциальной инфекционной природой, поэтому меры предосторожности против

любых специальных, несвойственных рисков при использовании или реализации изделия не предусмотрены.

7. Оборудование и материалы, необходимые при работе с набором

Оборудование:

- 1. ПЦР-бокс (типа «БАВ-ПЦР-«Ламинар-С», «Ламинарные системы», Россия).
 - 2. Вортекс (типа «ТЭТА-2», «Биоком», Россия).
- 3. Набор электронных или автоматических дозаторов переменного объема (типа «Eppendorf», Германия).
- 4. Холодильник от $+2^{\circ}$ С до $+8^{\circ}$ С с морозильной камерой не выше минус 16 °С.
- 5. Амплификатор роторного типа, например, «Rotor-Gene» 3000 или 6000 («Corbett Research», Австралия) или амплификатор планшетного типа, например, Real-Time CFX96 Touch («BioRad», США), «ДТпрайм» («ДНК Технология», Россия) или эквивалентные.

Материалы и реагенты, не входящие в состав изделия:

ВНИМАНИЕ! При работе с ДНК необходимо использовать только одноразовые стерильные пластиковые расходные материалы, имеющие специальную маркировку «DNase-free».

- 1. Одноразовые наконечники с аэрозольным барьером объемом до 200 мкл, до 100 мкл, до 20 и до 10 мкл. (например, «Axygen», США).
- 2. Штативы для наконечников (например, «Axygen», США) и микропробирок объемом на 0,5 (0,2) мл (например, «ИнтерЛабСервис», Россия).
 - 3. Отдельный халат и одноразовые перчатки.
 - 4. Емкость с крышкой для дезинфицирующего раствора.
- 5. Тонкостенные одноразовые пробирки с оптически прозрачной плоской крышкой (в случае детекции через крышку) или оптически прозрачными стенками (в случае детекции через стенку пробирки) для ПЦР объёмом 0,2 мл; либо пробирки для ПЦР объёмом 0,2 мл в стрипах или планшеты для ПЦР с оптически прозрачной плёнкой (например, Axygen, США).

8. Анализируемые пробы

Перед началом работы следует ознакомиться с методическими рекомендациями «Взятие, транспортировка, хранение клинического материала для ПЦР-диагностики», разработанными ФГУН ЦНИИЭ Роспотребнадзора, Москва, 2012 г.

Материалом для проведения ПЦР служат пробы геномной ДНК человека из образцов фиксированной в парафине ткани.

8.1 Процедура получения пробы геномной ДНК человека из фиксированной в парафине ткани

Для выделения пробы геномной ДНК человека из фиксированной в парафине ткани, необходимой для проведения ПЦР-анализа концентрации и чистоты, рекомендуется использование следующих комплектов реагентов:

- Набор реагентов для выделения геномной ДНК человека из фиксированных в формалине и заключенных в парафин тканей (ДНК-Ткань-Ф) по ТУ 21.20.23-009-97638376-2016, производства ООО «ТестГен», Россия. Регистрационное удостоверение № РЗН 2018/7772 от 30.10.2018;
- - Набор реагентов для выделения геномной ДНК человека из фиксированных в формалине и заключённых в парафин тканей (ДНК-Ткань-М) по ТУ 21.20.23-012-97638376-2019, производства ООО «ТестГен», Россия (регистрационное удостоверение № РЗН 2021/14273 от 06.05.2021 г).

8.2 Интерферирующие вещества и ограничения по использованию анализируемого материала

Для выделения из клинического образца достаточного для проведения ПЦР-анализа количества ДНК, необходимой чистоты, рекомендуется использовать наборы для выделения, указанные в п.8.1.

Для контроля эффективности экстракции ДНК и возможного наличия ингибиторов в пробе, присутствие которых может привести к ложноотрицательным результатам, все ПЦР-смеси содержат праймеры и зонды к внутреннему контрольному образцу (ВКО). Зонды к ВКО помечены НЕХ, чтобы отличить сигнал внутреннего контроля от сигнала FAM-меченных праймеров в реакциях мутантных вариантов гена *EGFR*. Прохождение реакции

говорит о достаточной эффективности экстракции нуклеиновых кислот и отсутствии ингибиторов ПЦР. При отсутствии реакции результат следует считать недостоверным, и в этом случае для данного исследуемого образца рекомендуется провести повторное выделение ДНК для проведения ПЦР-анализа. (см. раздел 11 «Регистрация и интерпретация результатов»).

Влияние потенциально интерферирующих веществ на работу набора реагентов «Тест-EGFR-ткань» было проверено в отношении потенциально интерферирующих веществ, которые могут остаться в пробе геномной ДНК человека после процедуры выделения ДНК, ингибировать Π ЦР-реакцию и оказать влияние на способность набора реагентов «Тест-EGFR-ткань» различать мутантные и нормальные варианты гена EGFR.

чтобы Пля того. опенить впияние потенциально интерферирующих веществ было выполнено исследование путем воздействия каждого вещества на значения С и качественное определение статуса мутаций в анализируемом образце, в двух концентрациях (максимальной и минимальной), ожидается, будет которых, встречаться диапазон как нормальном использовании набора реагентов «Тест-EGFR-ткань». Потенциально интерферирующие вещества и их концентрации приведены в таблице 4.

Таблица 4 – Концентрация интерферирующих веществ, проверенных при исследовании влияния интерферирующих веществ

Интерферирующие	Максимальная	Минимальная
вещества	концентрация (мкл /	концентрация (мкл /
	200 мкл раствора	200 мкл раствора
	ДНК)	ДНК)
Парафин (в ксилоле)	2,00*10-4	5,00*10-5
Ксилол	2,00*10-4	5,00*10-5
Этиловый спирт (95%)	1,35*10 ⁻³	3,38*10-4
Буфера для связывания ДНК	5,40*10-4	1,35*10-4

Протеиназа К		1,32*10 ⁻⁵	3,30*10-6
Элюент		1,33*10 ⁻³	3,33*10 ⁻⁵
Раствор промывки №1	для	0,50	1,25*10 ⁻¹
Раствор промывки №2	для	5,00	1,25

Ни одно из потенциально интерферирующих веществ, оцениваемых при концентрациях, которые, как ожидается, будут встречаться при нормальном использовании набора реагентов, не влияет на способность набора реагентов «Тест-EGFR-ткань» различать мутантные и нормальные варианты гена *EGFR*.

В дополнение к исследованию интерферирующих веществ было оценено влияние некротической ткани в образцах опухолей на способность набора реагентов «Тест-ЕGFR-ткань» выдавать достоверные результаты. Исследование влияние некроза было проведено на 10 образцах, которые имели некроз на уровне> 50%, как определено в обзоре патологии. После проведения анализа с помощью набора реагентов «Тест-ЕGFR-ткань» и интерпретации результатов, полученные данные сравнивались с результатами двунаправленного секвенирования данных образцов по Сэнгеру. В ходе проведения исследования был выявлен 1 ложноотрицательный результат, что может быть связано с недостаточным количеством ДНК.

Ограничения по использованию анализируемого материала:

- Анализируемый материал не подлежит использованию при нарушении условий хранения и транспортировки (температура, продолжительность, многократное замораживание-оттаивание). Анализируемая ДНК должна храниться при температуре от 2 °C до 8 °C и использоваться для анализа в течение 24 часов. Для храненияболее 24 часов раствор ДНК рекомендуется хранить при температуре -20 °C.
- Чистота анализируемой ДНК, выраженная в отношении оптических плотностей (A260/280нм), необходимая для проведения исследования, должна составлять не менее 1,4.
 - Концентрация ДНК, достаточная для проведения

исследования, должна составлять 1-50 нг/мкл.

- Не допускается использование образцов, загрязнённых посторонним биологическим материалом.
- Для анализа необходимо использовать пробы геномной ДНК, выделенные из ткани опухоли, подтвержденной гистологически.

8.3 Условия возможного хранения анализируемых образцов

Условия хранения пробы геномной ДНК человека, выделенной из образцов фиксированной в парафине ткани:

Полученная ДНК должна храниться при температуре от 2 °C до 8 °C и использоваться для анализа в течение 24 часов. Для хранения более 24 часов раствор ДНК рекомендуется хранить при температуре -20 °C.

Условия хранения исходного клинического материала:

Наиболее доступным клиническим материалом для выделения ДНК является ткань, фиксированная в формалине и заключенная в парафин (FFPE-блоки). FFPE-блоки могут храниться при комнатной температуре.

Парафиновые срезы могут храниться при комнатной температуре в течение 4 недель до выделения ДНК.

Условия хранения биопсийного материала, предназначенного для выделения $\Pi H K^1$:

- при комнатной температуре в течение 6 часов;
- при температуре 2–8 °C в течение 3 суток;
- при температуре минус 20 °C в течение 1 недели;
- при температуре минус 70 °C длительно.

¹ МУ 1.3.2569-09 Организация работы лабораторий, использующих методы амплификации нуклеиновых кислот при работе с материалом, содержащим микроорганизмы I-IV групп патогенности

9. Подготовка компонентов набора для исследования

Установка, монтаж, настройка, калибровка медицинского изделия для ввода в эксплуатацию не требуется.

Тщательно перемешать содержимое пробирок переворачивая каждую пробирку 10 раз или перемешать на вортексе на низкой скорости в течение 3-5 сек, а затем осадить капли с крышек пробирок коротким центрифугированием.

10. Проведение анализа

ПЦР-исследование состоит из следующих этапов:

- А) Подготовка ПЦР;
- Б) ПЦР-амплификация ДНК и гибридизационнофлуоресцентная детекция продуктов амплификации в режиме «реального времени»;
 - В) Интерпретация результатов (подробно описано в главе 11).

А) Подготовка ПЦР

(производится в ЗОНЕ пре-ПЦР – помещении для раскапывания реагентов и подготовки к ПЦР-амплификации)

Общий объем реакции – 20 мкл.

ВНИМАНИЕ! Запрещено изменять объем реакции. При изменении объёма чувствительность метода резко снижается!!!

Непосредственно перед проведением анализа необходимо приготовить реакционные смеси (мастермиксы) для анализируемой ДНК, ПКО и ОКО. Для этого в отдельных стерильных пробирках смешать все компоненты исходя из того, что для проведения одной

реакции необходимо взять 4 мкл ПЦР-смеси и 10 мкл Таqполимеразы. Обязательно использовать отдельный наконечник с аэрозольным барьером для каждого компонента реакции каждой пробы.

Готовить мастермиксы необходимо согласно таблице 4. В таблице учтен запас реактивов (+1 объём каждого вида) для компенсации возможных потерь при раскапывании.

ВНИМАНИЕ! При работе с Таq-полимеразой отбирайте из пробирки нужный объем, не опуская наконечник глубоко в реагент, чтобы не взять избыточный объем фермента за счет его попадания на внешнюю поверхность наконечника.

Таблица 4 - Приготовление мастермиксов (в расчете на количество анализируемых образцов).

Количество	ПЦР-смесь,	Taq,	Итого,
образцов	МКЛ	МКЛ	мкл
1	16	40	56
2	20	50	70
3	24	60	84
4	28	70	98
5	32	80	112
6	36	90	126
7	40	100	140
8	44	110	154
9	48	120	168
10	52	130	182
11	56	140	196
12	60	150	210
13	64	160	224
14	68	170	238
15	72	180	252
16	76	190	266
17	80	200	280
18	84	210	294
19	88	220	308
20	92	230	322
21	96	240	336
22	100	250	350
23	104	260	364
24	108	270	378

- 1. Внести по 14 мкл каждого мастермикса в соответствующие пробирки согласно рекомендованному порядку расположения реакций (см. табл. 5).
 - 2. Внести по 6 мкл ОКО в пробирки «ОКО».
 - 3. Внести по 6 мкл ПКО в пробирки «ПКО».
 - 4. Внести по 6 мкл образцов ДНК в пробирки «О».
- 5. Заклеить ПЦР-планшет/закрыть пробирки, убедиться, что все крышки или пленка прилегают плотно.
- 6. Открутить ПЦР-планшет/пробирки на центрифуге, чтобы собрать реакционную смесь на дне лунок, сохраняя правильную ориентацию планшета или серии пробирок.

Таблица 5 - Рекомендуемый порядок расположения реакций

	96-луночный планшет											
Тест	1	2	3	4	5	6	7	8	9	10	11	12
del	ОКО	ПКО	O1	O2	О3	O4	O5	06	O7	О8	O9	O10
L858R	око	ПКО	O1	O2	О3	O4	O5	06	Ο7	О8	O9	O10
del	O11	O12	И т.д.									
L858R	O11	O12	И т.д.									
	إحصا											

О1 – ДНК, выделенная из анализируемого образца №1 и т.д.

Б) ПЦР-амплификация ДНК и гибридизационнофлуоресцентная детекция продуктов амплификации в режиме «реального времени»

(производится в ЗОНЕ ПЦР – помещении для проведения ПЦР-амплификации)

1. Установить пробирки в реакционный модуль прибора для ПЦР в «реальном времени». Обратите внимание, что приборы для ПЦР в «реальном времени» должны обслуживаться, калиброваться и использоваться в соответствии с рекомендациями производителя.

Использование данного набора в неоткалиброванном приборе может оказать влияние на рабочие характеристики теста.

2. Запрограммировать прибор для выполнения соответствующей программы амплификации и детекции флуоресцентного сигнала согласно описанию для данного прибора (см. табл. 6, 7).

Таблица 6 - Программа амплификации для приборов

производства «ДНК – Технология»

Стадия	Температура, °С	Время	Всего циклов
1	95	2 мин	1
2	95	5 сек	50
3	64;;;	15 сек	50

ВНИМАНИЕ! Для приборов производства «ДНК-Технология» следует использовать заводские параметры экспозиции оптических измерений для каждого канала

Таблица 7 - Программа амплификации для других приборов

	· 1 1	1 11	· 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Стадия	Температура, °С	Время	Всего циклов
1	95	2 мин	1
2	95	5 сек	50
3	62;	15 сек	50

- 3. Запустить выполнение программы амплификации с детекцией флуоресцентного сигнала на стадии 3.
- 4. По окончании выполнения программы приступить к анализу результатов.

11. Регистрация и интерпретация результатов

Регистрацию результатов проводят с помощью программного обеспечения используемого прибора для проведения ПЦР с детекцией в режиме «реального времени». Анализируют кривые накопления флуоресцентного сигнала по двум каналам:

- по каналу **FAM** регистрируется сигнал, свидетельствующий о накоплении продуктов амплификации ДНК мутантных вариантов гена *EGFR* и делеций в экзоне 19 (обнаруживает наличие 27 делеций, но не различает их).
- по каналу **HEX** регистрируется сигнал, свидетельствующий о накоплении продуктов амплификации ДНК нормальных вариантов гена *EGFR* (выступает в качестве внутреннего контрольного образца BKO).

Результаты интерпретируются на основании наличия или отсутствия пересечения кривой флуоресценции пороговой линии.

Принцип интерпретации результатов в исследуемых образцах и контрольных образцах представлен в табл. 8 и табл. 9 соответственно.

ВНИМАНИЕ! В случае использования амплификатора CFX 96 может возникнуть необходимость выравнивания некоторых графиков с некорректным уклоном с помощью настроек (Settings) базовых циклов (Baseline Threshold → Baseline Cycles).

Таблица 8 - Интерпретация результатов в исследуемых образцах

Пробирки	Мутантная ДНК гена <i>EGFR</i> обнаружена	МутантнаяДНК гена <i>EGFR</i> не обнаружена	Сомнительный	Невалидный
del, L858R	Канал FAM: Ct≤35 Канал HEX: подъём кривой амплификации (любой Ct) или отсутствие подъёма кривой.	Канал FAM: отсутствие кривой амплификации. Канал HEX: Ct≤ 35	Канал FAM: подъём кривой амплификации, Ct > 35 Канал HEX: Ct≤ 35	Отсутствие кривой амплификации по обоим каналам HEX и FAM

Таблица 9 - Интерпретация результатов в контрольныхобразцах

Контрольный	Выбранный флуорофор	
образец	FAM/Green	HEX/Yellow
ОКО	Отсутствует	Ct >35 или отсутствует
ПКО	Ct ≤35	Ct ≤35

Интерпретация результатов в контрольных образцах

При получении для отрицательного контрольного образца значений, отличающихся от указанных в таблице 9, результаты всей постановочной серии считают недостоверными. В этом случае необходимо проведение специальных мероприятий для устранения возможной контаминации.

При получении для положительного контрольного образца значений, отличающихся от указанных в таблице 9, требуется повторная постановка амплификации всей партии образцов. При повторном получении для положительного контрольного образца значений, отличающихся от указанных в таблице 9, необходимо заменить реагенты.

Интерпретация результатов в исследуемых образцах

Интерпретацию результатов для исследуемых образцов проводят только при правильных результатах для ОКО и ПКО данной постановки.

Интерпретация производится с помощью программного обеспечения используемого прибора. Пороговая линия устанавливается на уровне перехода кривых в экспоненциальную фазу роста.

Мутантная ДНК гена *EGFR* обнаружена, если кривая амплификации по каналу FAM поднимается выше установленной пороговой линии, и при этом Ct≤35. По каналу HEX подъём кривой амплификации (любой Ct) или отсутствие подъёма кривой.

Мутантная ДНК гена *EGFR* не обнаружена, если кривая амплификации по каналу FAM не поднимается выше установленной пороговой линии, а кривая амплификации по каналу НЕХ поднимается выше установленной пороговой линии, Ct≤ 35 (то есть проходит ВКО).

Результат анализа сомнительный, если кривая амплификации по каналу FAM поднимается выше установленной пороговой линии, но при этом Ct>35. Кривая амплификации по каналу HEX поднимается выше установленной пороговой линии и Ct<35.

Результат анализа невалидный, если кривые амплификации не поднимаются ни по каналу FAM, ни по каналу HEX выше установленной пороговой линии. Это свидетельствует о том, что не прошли реакции ни на нормальную ДНК, ни на мутантную.

Если для пробы получен невалидный результат, требуется повторить ПЦР-исследование соответствующего исследуемого образца, начиная с повторного выделения ДНК из образца ткани или отвергнуть образец, как непригодный для данного вида анализа.

Если получен сомнительный результат, требуется повторить ПЦР-исследование соответствующего образца, начиная с повторного выделения ДНК из образца ткани.

Набор непригоден к дальнейшему использованию, если кривые амплификации по каналам FAM и HEX в пробирках ПКО ниже установленной пороговой линии и этот результат устойчиво воспроизводится.

12. Условия хранения, транспортирования и эксплуатации набора

Хранение.

Набор реагентов «Тест-EGFR-ткань» в упаковке предприятияизготовителя должен храниться при температуре от 2 °C до 8 °C в течение всего срока годности набора.

После вскрытия упаковки компоненты набора следует хранить при следующих условиях:

- компоненты набора следует хранить при температуре от 2 °C до 8 °C в течение всего срока годности набора;
- ПЦР-смеси del, L858R следует хранить в защищённом от света месте в течение всего срока годности набора.

Набор реагентов, хранившийся с нарушением регламентированного режима, применению не подлежит.

Транспортирование.

Транспортировать набор реагентов «Тест-EGFR-ткань» следует транспортом всех видов в крытых транспортных средствах в соответствии с правилами перевозок, действующими на транспорте данного вида.

Набор реагентов транспортировать при температуре от 2° С до 8° С. Допускается транспортировка при комнатной температуре (15–25°С) не более пяти суток.

Атмосферное давление не контролируется, т.к. не влияет на качество изделия.

Для обеспечения соблюдения условий транспортирования на протяжении всего срока транспортирования набор реагентов помещается в термоконтейнер пенополиуретановый многоразового использования для временного хранения и транспортирования с подготовленными хладоэлементами. Тип, объём и количество закладываемых термоконтейнер хладоэлементов, В транспортируемыми наборами объём реагентов, a также термоконтейнера подбираются В зависимости ОТ продолжительности и условий транспортирования.

Наборы реагентов, транспортированные с нарушением температурного режима, применению не подлежат.

Срок годности. Срок годности набора «Тест-EGFR-ткань» 12

месяцев со дня приемки ОТК предприятия-изготовителя при соблюдении всех условий транспортирования, хранения и эксплуатации. Набор реагентов с истекшим сроком годности применению не подлежит.

Срок годности вскрытых компонентов набора. 12 месяцев со дня приемки ОТК предприятия-изготовителя при условии хранения при температуре от 2 °C до 8 °C.

Срок годности приготовленных для работы компонентов набора. 1 час при соблюдении условий, препятствующих высыханию компонентов, а также контаминации посторонним биологическим материалом.

13. Утилизация

Наборы реагентов, пришедшие в непригодность, в том числе в связи с истечением срока годности, подлежат утилизации в соответствии с требованиями СанПиН 2.1.7.2790-10 «Санитарноэпидемиологические требования к обращению с медицинскими отходами».

В соответствии с классификацией медицинских отходов наборы относятся к классу А (эпидемиологически безопасные отходы, приближенные по составу к твёрдым бытовым отходам).

Неиспользованные реактивы в соответствии с п. 4.28 СанПиН 2.1.7.2790-10 «Санитарно-эпидемиологические требования к обращению с медицинскими отходами» собираются в одноразовую маркированную упаковку любого цвета (кроме жёлтого и красного).

Оставшиеся после выполнения работ пробирки и материалы утилизируют в соответствии с МУ 287-113 (Методические указания по дезинфекции, предстерилизационной очистке и стерилизации изделий медицинского назначения).

Жидкие компоненты (реагенты, реактивы) уничтожаются сливом в канализацию с предварительным разбавлением реагента водопроводной водой 1:100 и вывозом остатка упаковок как производственный или бытовой мусор.

Потребительская упаковка набора реагентов «Тест-EGFRткань» подлежит механическому разрушению с вывозом остатков как производственного или бытового мусора.

Персонал, осуществляющий уничтожение набора реагентов, должен соблюдать правила безопасности проведения того или

иного способа уничтожения.

14. Гарантийные обязательства, контакты

Предприятие-изготовитель гарантирует соответствие набора «Тест-EGFR-ткань» требованиям технических условий при соблюдении условий транспортирования, хранения и эксплуатации, установленных техническими условиями.

возникновении претензий наборов. При ПО качеству событий. нежелательных которые признаки имеют события неблагоприятного (инцидента), направлять информацию по адресу:

Общество с Ограниченной Ответственностью «ТестГен» (ООО «ТестГен»), 432072 г. Ульяновск, Инженерный 44-й проезд, дом 9

Тел.: +7 (499) 705-03-75

www.testgen.ru

Служба технической поддержки:

Тел.: +7 927 981 58 81 E-mail: help@testgen.ru